
Using Deceit in HCI:
Crimes For or Against the User?

Abstract

The use of deceit in human-computer interaction is

generally rejected by designers and ignored in HCI

research, despite the fact that well-used deception can

have a significant positive impact on user experience.

In this paper we present a model of deceit that builds

upon a criminal metaphor. With numerous examples,

we explore how designers may find the means, motive,

and opportunity to commit “crimes” of deception, and

discuss the benefits and costs to systems and users.

Keywords

Deceit, deception, lying, crime, means, motive,

opportunity.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g.,

HCI): Miscellaneous.

Introduction

Much human-computer interaction (HCI) research has

centered on increasing the communication bandwidth

between humans and computers so that users can

complete their tasks more efficiently. Researchers have

traditionally aimed to create systems and interfaces

that enable users to directly perform their desired

actions. In this paper, we present an alternate view,

framing HCI work within a paradigm focused on the

controlled use of deceit to manipulate user actions so

Copyright is held by the author/owner(s).

CHI 2008, April 5 – April 10, 2008, Florence, Italy

ACM 1-xxxxxxxxxxxxxxxxxx.

Eytan Adar

University of Washington

101 Paul G. Allen Center

Seattle, WA 98195-2350

eadar@cs.washington.edu

Desney S. Tan

Microsoft Research

One Microsoft Way

Redmond, WA 98052

desney@microsoft.com

Jaime Teevan

Microsoft Research

One Microsoft Way

Redmond, WA 98052

teevan@microsoft.com

 2

that users better achieve their goals. In doing this, we

borrow from terminology used in criminology. Through

numerous examples, we show that this paradigm can

be used to retroactively describe previous research,

and hope that it will motivate discussion as well as

novel ways of thinking about and working in the space.

Due to negative associations, deceit is generally

rejected by designers and ignored in research. The

impression is typically that outright deception should

not (and does not) exist in good design, and that

misleading information is simply the result of a bug or

poor design (e.g., “printing successful,” lied the

computer with the failed print driver). However, there

are many examples in which deception and

deceptiveness may in fact represent positive design

choices. The reality is that whether intentional or

unintentional, implicit or explicit, acknowledged or not,

deceit exists in HCI. We assert that with proper

understanding, we can embrace deceit for the benefit

of users and/or designers. Take the following case

studies as examples:

Example 1: The connection of two individuals over a

phone line is managed by an enormous specialized

piece of hardware known as an Electronic Switching

System (ESS). The 1ESS, the first such system, was

designed to provide reliable phone communication, but

given the restrictions of early 1960s hardware,

sometimes had unavoidable failures that could lead to

errors in initial connection. However, the 1ESS was

designed to not report failures to the client (though it

could). Instead, erroneous calls were allowed to go

through, connecting the caller to the wrong person. The

individual, thinking that they had simply misdialed,

would hang up and try again, and the illusion of the

infallibility of the phone system was preserved [24].

Example 2: In order to help stroke patients regain

movement, researchers designed a custom robot to

provide Constraint-Induced Movement Therapy. The

robot, which was attached to a monitor, provided visual

feedback to the user on the amount of force exerted. In

order to “overcome…self-imposed limits,” the system

was designed to leverage perceptual limits through

visual distortion. For example, a patient may not be

able to distinguish between 7 and 9 units of effort, but

may believe themselves only capable of 8 units. The

system would visually report 7 when the patient had

exerted 8, inducing the feeling that they had exerted

less effort and encouraging additional force [4].

Example 3: People generally like to feel like they

control their environment. When a system designer, for

whatever reason, does not provide actual control they

may introduce “placebo buttons.” For example, in 2004,

2500 of 3250 cross-walk buttons in New York City were

implemented even though they did not function at all

[18]. Similarly, buttons to control the elevator or the

thermostat may provide the illusion of control but may

in fact be a buttons connected to nothing [29]. Though

we may partly justify such designs based on user needs

and desires, in reality this design decision may serve

the designers, developers, or system owners more.

A common feature of the examples, and HCI deceit in

general, is the manipulation of a user’s belief (i.e.,

mental model) relative to the true properties of the

system (i.e., the system image or system model). The

difference between reality and belief, and the frequent

poor fit between them, is the region in which deceit,

deception, and deceptiveness may exist.

In this paper, we present a model of deception based

on an analogy to criminology, couching it in terms of

 3

means, motive, and opportunity. This model allows us

to look at how previous systems have taken advantage

of the poor fit between a user’s mental model and

reality. We conclude with a discussion of how and when

such a model might be used to create an experience for

the user that is better than might be achieved without

the use of deception.

Related Metaphors

The closest work in this area specific to HCI has been

the use of magic [32] and cinema/theater [16] as

instructional metaphors for HCI design. These art-

forms—where illusion, immersion, and the drive to

shape reality dominate—work well in situations in which

there is willing suspension of disbelief on the part of the

user/observer (or at least willing pursuit of acceptable

mental models). Similar lessons may be drawn from

architectural design. For example, theme park and

casinos [9][19][20] are designed specifically to utilize

various illusions that manipulate users’ perception of

reality, entertainment, and participation in the

experience. In the case studies below we will see a

number of deceits in HCI systems that have parallel

designs to magic, theater, and architecture.

In the rest of this paper, we expand previous

metaphors to include instances in which the user does

not willing participate in the deception. Though the

notion of HCI deceit as a crime is somewhat

sensationalist, it works well as deception and

deceptiveness are traditionally regarded as violations of

design rules, principles, and laws (e.g.

[3][10][23][27]), albeit often for good cause.

Note that we are not concerned with deceits that are

violations of criminal law (e.g., phishing and other

fraud). Deceptive practices that are acknowledged as

harmful by legal organizations are, for generally good

reasons, considered harmful by designers.

Deceit in the language of criminology further allows us

to begin to understand the “victims,” i.e., the users,

who would act differently had they known the truth.

This language opens deceit to analysis in terms of

means, motive, and opportunity (MMO), three well-

known aspects used to analyze crimes. However,

before concentrating on the who, why, when, where

and how of deceit, it is important to form some formal

understanding of what deceit is.

A Working Definition of Deceit

Deceit is generally regarded as manipulation of the

truth either by hiding truthful information or showing

false information. Deception is an act of deceit with

implied intent (e.g., telling the user the web page is

70% loaded when we know that this is not the case).

On the other hand, deceptive(ness) does not require

intent (e.g., telling the user that the web page is

absolutely 70% loaded based on some estimate with

high error margins). Though this distinction is

important as it speaks to motive, deceit exists with or

without intent. In fact, when deciding whether an

advertisement is illegal, the FCC will only consider the

deceptiveness of the message irrespective of intent.

That being said, proving motive/intent in a system or

design is also a very convincing argument for

conviction. There is a notable difference between un-

intentional bugs, errors, or bad metaphors and ones

that have been carefully designed for specific purpose.

Building on the behavioral/legal definition introduced in

earlier work [26] that deals with deceptive advertising,

we put forth a working definition of deceit as it applies

to HCI work in the sidebar. The points about how deceit

Deceit occurs when

1. an explicit or implicit

claim, omission of

information, or system

action,

2. mediated by user

perception, attention,

comprehension, prior

knowledge, beliefs, or

other cognitive activity,

3. creates a belief about a

system or one of its

attributes,

4. which is demonstrably

false or unsubstantiated

as true,

5. where it is likely that the

belief will affect behavior,
6. of a substantial

percentage of users.

(Definition based on [26])

 4

must substantially affect behavior (points 5 & 6) are

perhaps the most controversial, and are purposefully

left ambiguous. How behavior is impacted and what

“substantial” means are left open since there is likely

no fixed answer that works in every situation. A

deceptive interface that causes physical harm in 1% of

the user population may have a substantial effect,

whereas an idempotent interface with a button that

misleads significantly more users into clicking twice

may not pass the “substantial” test.

In addition to intent, there are many other ways of

dividing deceit into sub-categories. Bell and Whaley [2]

identify two main types of deception—hiding and

showing—which roughly correspond to masking

characteristics of the truth or generating false

information (both in the service of occluding the truth).

These forms of deception represent atomic, abstract

notions of deceit that we refine in our discussion below.

Related to the hiding/showing dichotomy is the split

between silent (a deceptive omission) versus verbal or

expressed deception. Lying, as a special class, is

generally considered to be a verbal form of deception

[3]. Because HCI need not involve a verbal element, we

expand the notion of the “lie” to include non-verbal

communication between humans and computers.

The Means

As mentioned to earlier, deceit exists in the area

between the reality of the system and the mental

model. A deceptive or misleading system works by

manipulating or taking advantage of the distance

between the system image and that mental model. We

propose a number of ways in which this happens in HCI

work. Note that categories in our taxonomy are not

orthogonal, and specific case studies frequently involve

multiple forms of deceit.

Functional Deceits

Functional deceit works by misleading the user about

how something works. In certain cases we see

instances of the user’s mental model being adjusted

through deceit. In other examples, the system image

will be changed or deceptively given the appearance of

change, to more closely match the mental model and

user expectations.

One of the most common forms of functional deceit is

the use of metaphors. The designer implies or misleads

the user into believing that something works as the

metaphor by which it is being described. Metaphors are

rarely acknowledged as deception, but naturally fall into

the role by creating the scaffolding that holds the

mental model separate from the image. Metaphors may

not be intentional deception but may nonetheless

deceive as, “[they] are basically devices for

understanding and have little to do with objective

reality, if there is such a thing.” [16]

While popular in HCI for their ability to map the

unfamiliar to the known, some (e.g., [21]) have noted

that metaphors “become like a lie…more and more

things have to be added to [them].” Kay instead

proposes that where metaphor ends, magic should

begin, so that a “user illusion” may be created [13].

This shift potentially replaces one form of deceit—in

which we repackage one system as another—with a

deceit in which we invent new characteristics that

reshape the mental model but are nonetheless different

than reality (the internal guts of a file system are not

like a desktop, magic or otherwise).

Other designers have embraced the idea of the

metaphor and encourage the maintenance of these

mappings even though they are a myth [27]. In

 5

addition to the popular desktop metaphor, many

encourage the tendency towards anthropomorphism of

the computer. Studies on adding personality and

realism to computers encourage this type of deceit

(e.g., [8][16]), and the theme park idea of “illusion of

life” is also applied in computer systems.

INFORMATIONAL DECEITS

In informational deceit, users are led to believe that

their action created an immediate response that

typically masks system delays. For example, queues

are generally designed to hold data before it is

“committed” to some service. Print, network, mail, or

file queues frequently create the illusion of immediate

action, when in fact processing is still happening.

Statistical databases [1] are a different example of

such programmed informational deceits. These

databases are designed to only answer queries through

aggregate, overly general, or fuzzy responses that

prevent the user from finding the exact data (or even

knowing that it exists).

Systems may be designed to include showmanship

[32], eye-candy, weenies [19], drivers [9], or chocolate

[24] to cover mistakes. Regardless of the name, the

common feature is that users can be manipulated by

distractions into belief or behavior. Image processing

systems, because of computational costs and delays,

have often made use of this type of deceit. One of the

earliest discussions on “placebo” design comes from a

graphics system in which a slow-loading image was

tiled, slowly appearing on screen, to provide the

sensation of action and availability [12].

SANDBOXING

Sandboxing is functional deceit in which a designer

creates a secondary system that behaves differently

from the real system. For example, the Vista Speech

Tutorial is designed to provide the illusion that the user

is making use of the real speech recognition system. In

reality, a “safe” version of the environment has been

created for the user that is programmed to be less

sensitive to mistakes [33]. Wizard-of-oz studies fall into

this category by allowing the user to believe that they

are using one system (a working, programmed

implementation), but are in fact playing in a human-

driven, semi-functional sandbox.

SYSTEM INTERNALS: PERFORMANCE, COMPLEXITY, AND FAILURE

Frequently functional deceits and sandboxing can be

used for the purpose of implying certain performance

levels. For example, we know of at least one search

engine (a small vertical one) that has responses to

certain popular queries hard-coded. Realizing that new

users frequently try the system with these popular

queries, the system provides high-quality answers to

them. Performance based deceits can work in both

directions, misleading users into believing the system is

under- or over- performing or about the capabilities of

the system. The Grunt system [28] implies the

capability of speech recognition to the user, but in fact

simply works on non-verbal analysis (e.g., utterance

length, pitch, etc.).

While over-representing performance and capabilities

might be a natural, one may wonder about “modest”

systems that under-represent their abilities. Such

systems emerge in situations where user expectations

need to be managed or safety is an issue. For example,

service-based industries (e.g., network, database,

server farms, etc.) are fined heavily for not meeting

Service Level Agreements (SLAs). Creating a false-

impression of available capabilities and consistent

 6

performance by throttling back the system is more

desirable in that users see constant performance and

do not come to expect inconsistently obtainable

behaviors. Systems in which safety is a concern may

also make use of conservative estimates and readings

(biased from the true expectation and levels) that

effectively mislead a user.

The Time-Sensitive Object Model [6] is an example of a

combined performance/sandbox deceit. The system,

intended to handle real time data (e.g., from a radar

system), had multiple modes of data processing. The

first is the presentation of actual real-time data

whereas the second extrapolates the value of that data.

Similar techniques are applied in modern streaming

database applications where data is dropped if the

system becomes overloaded. Thus the illusion of real-

time data processing is maintained by hiding data and

performance failures.

System designers may also wish to present a false

impression of the complexity of a certain interface (see

sidebar). A related idea is the multi-level interface. An

expert user may be presented (or have some back-door

access) to one form of the interface, giving them

access to many functions and controls. The novice, who

is provided with a much simpler view, is led to believe

that the system is less complex than it is.

Finally, systems may be designed to falsely imply the

source of failure/success. The ESS example discussed

earlier is a clear example of such a deception, as the

user is led to believe that the failure (misdialing) was

their fault. Deceptions such as these are easy where

there are layered systems since users will frequently

attribute blame to the level most proximal to

themselves. In the absence of other factors such as

preconceptions or knowledge of failure sources, a user

is more likely to blame the browser than the operating

system and the operating system would be blamed

before the computer manufacturer. It is interesting that

the individual programmer of any component is

generally never blamed for anything [25].

Human Factor Deceits

A user’s comprehension and interaction with a system

are mediated by the user’s perception, attention,

comprehension, prior knowledge, beliefs, and other

cognitive activity. From these, a second class of HCI

deceits emerge which are built to take advantage of,

and occasionally “fix,” the physical, sensory, and

psychological limits, capabilities, and learned behaviors

of the user.

All users have some physical/sensory limits that

influence their ability to interact. Whether it is in

response to limits of perceptions (e.g., color or

distance) or resolution (e.g., Fitt’s Law), interfaces

include deceptive features that attempt to make a user

feel more successful. A drop-down menu bar, for

example, is programmed not to roll back as soon as the

user moves one pixel out of the box. Such practices

hide the user’s limits from themselves in situations

where the system has perfect sensing but also work

well for inaccurate sensors (e.g., certain Nintendo Wii

games that give the user “the benefit of the doubt”).

Both theme park and interface designers have some

understanding of the limits of a user’s power of

observation (no one can see through a wall). Thus,

while attention to detail is frequently respected to

maintain an illusion, things that are not observed by

the user are frequently messy or cheap. The developers

of the therapy robot, described earlier, took advantage

Masked Complexity

One example is a system one

of us designed to allow users

to negotiate for a price using

PDAs. The two participants

would enter their real

asking/offering prices into

their PDAs and the system

would decide whether a deal

was possible (without giving

away the prices). Though the

particular zero-knowledge

protocol was complex and

highly secure in the

cryptographic sense, it was

nonetheless nearly

instantaneous and

disconcerting from the

perspective of the user (there

was no “feeling” that the

system was secure). An

illusion of complexity was

generated by using a slow

loop whose only purpose was

to replace each entered

character with a “*”,

gradually covering the full

text box.

 7

of the perceptual limits of users in a different way. By

making use of just-noticeable differences (JNDs),

developers can create the illusion that an action has, or

has not, been influenced. The graphics community

frequently uses optical illusions, perspective tricks, and

cinematographic techniques to force the user to see

something that is not there or ignore something that is.

For example, a purposefully blurred image creates the

illusion of movement, and only changing a scene when

a user’s vision is disrupted can make for smoother

rendering (i.e., change blindness) [7]. Blindness to

change and memory limits may also be used in non-

graphic systems, for example to replace old unused

search results with better answers [31].

A wide spectrum of psychological limits,

misperceptions, and fallacies can also be used to

deceive. Magicians, in particular, understand such limits

and the application of their ideas in HCI are discussed

extensively in [32]. Psychological deceits may also

include manipulations based on attractiveness.

Aesthetically pleasing designs and faces (e.g., avatars)

are known to elicit a more positive response

(independent of function) [30]. Psychological deceits

based on economic ideas can also be used to motivate

behavior (e.g., whether an action is described in terms

of risk or gain, the illusion of scarcity, sunk cost fallacy,

and relative memories [5]).

Another interesting form of deceit is based on social-

psychology. As mentioned earlier, the tendency to

anthropomorphize the computer may lead users to

interact with computers as if it they are real people.

Leveraging this belief can help system designers build

heuristics and features into their system (see sidebar).

The Motive

In our definition of deceit we noted that depending on

intent we either have deception or deceptiveness.

Understanding the difference helps us to decide if the

design is deceptive and contains unintentional

deceptive elements, such as bad metaphors, unclear

user models, and interface bugs. Alternatively, the

design may be intentionally deceptive for various

reasons. Though this deceit need not be malicious or

malevolent, the designer or programmer has made a

conscious decision to deceive the user.

Thus far, we have concentrated on the user’s mental

model and the system image in understanding deceit. A

third part of this relationship is the designer’s mental

model (i.e. the design) which represents the goal of the

designer. Abstractly, if either the system image or

user’s mental model are not aligned with the design,

the designer/developer may resort to deception. This

appears especially true when designs must create

balance between maximizing the utility to the user,

minimizing “risks,” or maximizing the “profit” of the

designer or developer.

Developers of a product generally make tradeoffs

between resources dedicated to building the product

and user needs. As money-making enterprises,

providing illusions to the user may culminate in real

profit to the developer. The literature on theme park

and casino design are filled with such examples. The

theme park must manage long lines and use demands

that exceed the resources of the park. Deceptive lines

and other distractions allow users of the park to enjoy

their visit without requiring more costly additions [19].

In casinos, confusing maze-like paths with no easy way

out and the illusion of small secluded spaces are

Ritualized Interactions

The Phone Slave system

made use of “ritualized

interactions” by priming the

user to talk to an automated

agent as if it were a real

person. By asking leading

questions that made users

respond the way they would

to a human, the system did

not need to have any real

speech recognition. The

designer noted that

“although we are not trying

to deliberately mislead the

caller, the illusion of

intelligence, either the

assumption that one is

talking to a human or that

one is talking to a very clever

machine certainly aids the

interaction” [28].

 8

created by manipulating architectural elements and

encourage users to stay and spend money [9].

It is easy to forget that most systems are designed to

be used more than once and more importantly to be

sold at a profit (hopefully buying the next version as

well). When running into limits of time or other

resources there is certainly a temptation to use

deception to satisfy the user. Both the 1ESS which

doesn’t report failure, and the placebo thermostat, stop

complaints and product defections and are at least

partially motivated by the benefit to the developer.

Deceits that attempt to help the user are generally

easier to excuse (unless you are a believer in

psychological egoism). The literature on HCI is filled

with rules and suggestions about how interfaces should

be built. At times, these rules necessitate certain

deceits that provide users with better experiences. For

example, the principle of least astonishment is

occasionally satisfied through the use of deceit. Hiding

complexity and providing metaphors may reduce the

learning curve and increase adoption of an interface.

Other deceptions are motivated (and justified) by the

fact that they will help the user later on. The

therapeutic robot is one such example.

In situations where two design rules conflict, the

designer may also resort to deception as the “lesser of

two evils.” For example, one should build a system to

“fail gracefully” but not to “fail silently.” But what of the

situation in which failing gracefully is failing silently and

allowing the user to continue? In such cases, the user

may be deceived about the existence of the failure.

A different driver for deceit is that some systems must

serve the needs of many users and the interactions

between them. The need to maintain security and

privacy might lead to designs like the statistical

databases described above or the login screen that

does not disclose which of the two fields, username or

password, were incorrect. Situations in which we have

an “adversary” (e.g., malicious users, in military

applications, etc.) are frequent candidates for deceptive

behaviors (e.g., honeypot servers that appear as

regular unprotected machines but are meant to trap

hackers or network providers that deceive file sharing

applications into believing they are disconnected).

Although we are primarily concerned with HCI in this

paper, it is worth noting that computer-mediated

communication systems are occasionally designed to be

manipulated by one user (the “programmer” of the

message) to convey false information as in an instant

messaging system that provides the ability to hide

presence, or e-mail systems that provide the illusion of

availability through delayed mail and automatic

responses.

The Opportunity

These are at least two possible opportunities for

(successful) deceit: a) when a user wants to be

deceived, and b) when a user will not be able to tell the

truth from the deception. Though these may appear

obvious, it is not always easy to find opportunities

where deceit will not backfire.

Users sometimes possess “willing suspension of

disbelief.” In such situations the user would like—

consciously or unconsciously—to experience something

beyond the capabilities of the medium (e.g., reality in a

virtual reality space, simplicity in a complex space,

control in an uncontrolled environment, etc.). In these

instances, the user accepts, and may even demand,

deceit over truth.

 9

When a user does not want to be deceived, but the

designer/programmer is motivated to, opportunities

present themselves in uncertainty. When the user is

uncertain about which state the system is in (e.g.,

cannot build an adequate mental model of the system),

or the difference between multiple states, there is an

opportunity for deceit. For example, such opportunities

exist in cases where the user can’t tell the source of the

failure (the 1ESS example) or the impact of their

actions (the “placebo” buttons).

However, it should be noted that there is a distinction

between “successful” and “useful” deception and while

each is necessary for use in HCI settings, neither alone

is sufficient. While we have pointed out that deceit can

be useful to various parties, i.e. companies, developers,

etc., we choose to assume in this discussion that

designers have an altruistic bent (if sometimes hidden)

and the ultimate aim is to make their systems useful to

the end-user. In fact, aiming for this tends to benefit all

parties, and it is the approach we recommend.

Implications, Consequences, and Ethics

Having considered various case studies of deceit in the

context of HCI, we now turn to the broader implications

of our analysis and deceit in general. Understanding the

different means, motives, and opportunities can be

used as ingredients for designed deceit (see sidebar).

However, as we note above, there is a difference

between blind application of the recipe and more

thoughtful design of useful deceptions. Ideally, deceit

would be considered early in the design process, and in

the context of all stakeholders, rather than as an

attempt to quickly patch a mistake.

Useful Deception: There are many opportunities for

useful deceit, most of which revolve around

intentionally creating a user mental model that does

not correspond to what the system is actually doing. In

situations where a system that is deficient or limited in

some way—too complex, too slow, too uncertain—and

that deficiency interferes with the intended purpose of

the system, a designer may choose to hide these

negative properties. Through deception, the designer

may provide the appearance that the negative

properties do not exist. Though subtly different, the

inverse of this is when the user or designer expects the

system to display positive properties that are not

present. Here, the design must create the illusion that

certain features are available.

Both manipulations involve no real change to the core

system image but rather “tweak” the user’s model of

that image. Regardless of why or how, when this model

is well-crafted and encompasses desired critical

functionality, users typically benefit. However, when

users have to sidestep this model to perform their

tasks, results are sometimes catastrophic as users are

not usually equipped to debug the system which has

been intentionally hidden from view.

Getting Caught: Thus far we have ignored one principle

issue with deceit, namely that there is a difference in

being deceived, and realizing that we have been

deceived. Just as in human-human interactions, there

is an inevitable cost to being “caught.” The

programmed price-discrimination on Amazon’s website

elicited strong reactions by users who felt they were

being deceived about the price of items [15]. A user

that has been trained to click on error boxes to dismiss

them may be misled into clicking on an advertisement

to their irritation. A user that has been made confident

by a simulator or emulator, basic sandbox type deceits,

may find their life threatened when using the real

Designed Deception:

Construction of new

deceptions requires

working backwards

through the definition of

the deceit by

1. selecting who we want

to deceive,

2. deciding what

behavior or belief we

intended to influence,

3. understanding how a

user will process the

deceit,

4. selecting from the

various types of

deceits that work in

HCI contexts the

appropriate means

that will produce the

behavior, and

5. carefully seeking the

opportunity to commit

the deception

 10

system [13]. Though generally not in the terms of

deception, there is a great deal of discourse on trust

(e.g., [10]) and credibility (e.g., [11]) in HCI

environments. The damage to trust and the user on

revelation of a deceit must be carefully evaluated.

When deceits are not carefully crafted and users get

confused, they often have to “go under the hood” (i.e.,

try to figure out the system model) in order to proceed

with their task. This usually leads to massive failure as

debugging is extremely difficult once the user’s view of

the system has been intentionally manipulated.

Not Getting Caught: Human-to-human deception has

some fundamental differences to computer-to-human

deception. Computer interfaces, APIs and GUIs, tend to

encourage abstraction barriers around complex internal

machinery. Unlike communication between two

humans, users are less likely to be able to place

themselves in the “mindset” of the system as they

would with another human and are therefore less likely

to detect deceit. Additionally, interfaces tend to be

designed for consistency, foiling one of the primary

mechanisms by which humans detect deceit between

themselves. On the other hand, deceit sometimes

requires careful adaptation and planning—something

programs are generally not very good at (e.g., when a

metaphor breaks in some unexpected way). When

considering a deceit, it is worth building with these

differences in mind.

It is also important to consider the impact of not

getting caught in the long run. A user may come to rely

on a deceit and become unwilling or unable to learn

and adapt to new and better interfaces. Once created,

many deceits require commitment, forcing a quick

“hack” to become a permanent solution.

Ethical Considerations: An important step in designed

deception is understanding our motivations for creating

the deceit. Though we have listed potential motives, it

is important to acknowledge that many are simply

rationalizations which require careful analysis. We do

not endorse dogmatic views of deceit (always good or

always bad). As argued by Bok [3] in the case of lying,

we believe that given the negative impacts of deceit it

is worth considering all possible truthful alternatives. It

is therefore worth adding a step 0 to our designed

deception: 0) exhausting all truthful options.

Conclusions

In this paper we have we have provided an alternative

view of system and interface design that borrows from

the lexicon of criminology and couches much of our

work within the careful use of deceit in order to

influence user behavior. While we obviously do not

advocate blindly resorting to deceit in all instances, we

believe that there are opportunities in the metaphor for

improving our understanding and ability to craft useful

systems. Deceit is a frequently used, but rarely

designed, feature in HCI. We attempt to provide

preliminary guidance on design principles that fall out

of the descriptive model we present, but as with any

good set of principles, we believe this requires deeper

discussion and continued iteration within the

community. The purpose of this paper is to propose a

backbone for such discussion, shed light on the issues,

and provide a starting point for such discussion.

We assert that the end-goal and motivation for using

deceit must be carefully considered. We hope that this

article inspires designers to understand and use these

powerful tools for good, committing these “crimes of

deception” for rather than against users. Similarly,

armed with this information, we hope that the criminals

 11

become easier to apprehend, and that the CHI

community as a whole will benefit from this alternate

view of the work we do.

Acknowledgements

We’re particularly grateful to those who read early

versions of this paper: Dan Weld, Yaw Anokwa, Travis

Kriplean, Sara Adar, and Yang Li. Thanks also to Yoshi

Kohno, David Notkin, Brian Bershad, Andy Begel, and

Mike Toomim for suggested case studies. Eytan Adar is

funded by an NSF and an ARCS Fellowship.

References
[1] Adam, N.R., and J.C. Worthmann, Security-control
methods for statistical databases: a comparative study,
ACM Computing Surveys, 21(4):515-556, Dec. 1989.

[2] Bell, J. B., and B. Whaley, Cheating and Deception,
Transaction Publishers, 1991.

[3] Bok, S., Lying: Moral Choice in Public and Private
Life, Vintage Press, 1999.

[4] Brewer, B.R., M. Fagan, R. Kaltzky, and Y.
Matsuoka, “Perceptual Limits for a Robotic
Rehabilitation Environment Using Visual Feedback
Distortion,” IEEE Trans. On Neural System and
Rehabilitation Engineering, 13:1-11, 2005.

[5] Camerer, C. F., G. Loewenstein, and M. Rabin
(eds.) Advances in Behavioral Economics, Princeton
Press, 2003.

[6] Callison, H. R., “A time-sensitive object model for
real-time systems,” ACM Trans. on Software
Engineering and Methodology, 4(3):287-317, July,
1995.

[7] Carter, K., A. Chalmsers, and C. Dalton. (2003).
Level of detail: Varying rendering fidelity by exploiting
human change blindness. Int. Conf on Comp Graphics
and Interarctive Techniques in Aust. and S. East Asia,
2003.

[8] Cowell, A. J., and K. M. Stanney, “Manipulation of
non-verbal interaction style and demographic
embodiment to increase anthropomorphic computer
character credibility,” Int. J. of Human-Computer
Studies, 62:281-306, 2005.

[9] Friedman, B., Designing Casinos to Dominate the
Competition, ISGCG, University of Nevada, 2000.

[10] Friedman, B., Human Values and the Design of
Computer Technology, CSLI, 1997.

[11] Fogg, B.J., Persuasive Technology: Using Computes
to Change What We Think and Do, Morgan Kaufmann,
2002.

[12] Irani, K.B, V. L. Wallace, and J.H. Jackson,
“Conversational design of stochastic service systems
from a graphical terminal,” Int. Symp. on Comp
Graphics, 1970.

[13] Johnson, C.W. “Looking beyond the cockpit: human
computer interaction in the causal complexes of
aviation accidents” HCI in Aerospace, EURISCO, 2004.

[14] Kay, A. “User Interface: A Personal View,” In B.
Laurel (ed.), The Art of Human-Computer Interface
Design, Addison-Wesley, 1991.

[15] Krugman, P., What Price Fairness?, The New York
Times, October, 4, 2000.

[16] Lakoff, G., and M. Johnson, Metaphors We Live By,
University of Chicago Press, 1980.

[17] Laurel, B., Computers as Theatre, Addison-Wesley,
1993.

[18] Luo, M., “For Exercise in New York Futility, Push
Button,” The New York Times, Feb. 27, 2004.

[19] Marling, K.A. (ed), Designing Disney’s Theme
Parks: The Architecture of Reassurance, Flammarion,
1997.

[20] Mitrašinović, M., Total Landscape, Theme Parks,
Public Space, Ashgate, 2006.

 12

[21] Nelson, T.H. “The Right Way to Think About
Software Design,” In B. Laurel (ed.), The Art of Human-
Computer Interface Design, Addison-Wesley 1991.

[22] Norman, D. “Some Observations of Mental Models,”
In Gentner, Dedre & Stevens, Albert L. (eds.), Mental
Models, Lawrence Erlbaum Associates, 1983.

[23] OCLC, Fourteen heuristics used in OCLC heuristic
evaluations, http://www.oclc.org/policies/usability/
heuristic/set.htm, retrieved Jan. 2008.

[24] Plauger, P. J. “Chocolate,” Embedded Systems
Programming, 7(3):81-84, Mar. 1994.

[25] Reeves, B., and C. Nass, The Media Equation: How
People Treat Computers, Television, and New Media
Like Real People and Places, CSLI, 2003.

[26] Richards, J.I., Deceptive Advertising: Behavioral
Study of a Legal Concept, Lawrence Erlbaum
Associates, 1990.

[27] Rubinstein, R., and H. M. Hersh, The Human
Factory: Designing Computer Systems for People,
Digital, 1984.

[28] Schmandt, C., Illusion in the Interface, In B. Laurel
(ed.), The Art of Human-Computer Interface Design,
Addison-Wesley, 1991.

[29] Sandberg, J., “Some Cold Employees May Never
Find Relief,” Wall Street Journal Online, Jan. 17, 2003.

[30] Tractinsky, N., A.S. Katz, and D. Ikar, “What is
beautiful is usable,” Interacting with Computers,
13:127-145, 2000.

[31] Teevan, J. “The Re:Search Engine: Simultaneous
support for finding and re-finding,” UIST, 2007.

[32] Tognazzini, B., "Principles, Techniques, and Ethics
of Stage Magic and Their Application to Human
Interface Design," INTERCHI, 1993.

[33] Zheng, L. “Interview with Oliver Scholz: Vista
Speech UX Program Manager,”
www.istartedsomething.com/ 20060901/interview-
oliver-scholz/, Sep. 1, 2006, (retrieved Jan. 2008).

